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Abstract. We apply the energy-momentum tensor to calculate energy, momentum and angular-momentum
of two different tetrad fields. This tensor is coordinate independent of the gravitational field established in
the Hamiltonian structure of the teleparallel equivalent of general relativity (TEGR). The spacetime of these
tetrad fields is the charged dilaton. Our results show that the energy associated with one of these tetrad
fields is consistent, while the other one does not show this consistency. Therefore, we use the regularized
expression of the gravitational energy-momentum tensor of the TEGR.We investigate the energy within the
external event horizon using the definition of the gravitational energy-momentum.
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1 Introduction

Quantum mechanics and general relativity (GR) are two
very successful and well validated theories within their own
domains. The main problem is to unify them into a sin-
gle consistent theory. One of the most promising models of
unification is string theory. String theory is classified into
two classes, which are closed and the open strings. Gravity
is described by the first class, while matter is described by
the second one. In case of non-perturbative string theory,
there are extended objects known as D-branes. These ob-
jects are surfaces where open strings must begin and finish;
they provide an alternative approach to the one of Kaluza–
Klein [1, 2]. In this latter approach the matter penetrates
the extra dimensions, leading to strong constraints from
collider physics.
Nowadays, there is a growing body of literature on the

gravitational field of string matter coupled to an electro-
magnetically charged dilaton field. Black hole solutions
in dilaton gravity were first analyzed by Gibbons and
Maeda [3]. Garfinkle et al. [4] have obtained a family of so-
lutions representing static, spherically symmetric charged
black holes. Kallosh and Peet [5, 6] in the context of su-
persymmetric theories investigated these solutions. When
the dilaton acquires a mass Gregory and Harvey [7] modi-
fied the dilaton black holes. A static spherically symmetric
metric around a source coupled to a massless dilaton with
both electric and magnetic charges has been investigated
by Agnese and Camera [8].
Among various attempts to overcome the problems of

quantization and the existence of singular solution in Ein-
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stein’s GR, gauge theories of gravity are of special interest,
as they are based on the concept of gauge symmetry, which
has been very successful in the foundation of other fun-
damental interactions. The importance of Poincaré sym-
metry in particle physics leads one to consider Poincaré
gauge theory (PGT) as a natural framework for the de-
scription of the gravitational phenomena [9–19]. Basic
gravitational variables in PGT are the tetrad field eaµ
and the Lorentz connection Aabµ. These variables are as-
sociated to the translation and Lorentz subgroups of the
Poincaré group. The gauge fields are coupled to the energy-
momentum and spin of the matter fields, and their field
strengths are geometrically identified with the torsion and
the curvature.
The general geometric arena of PGT, the Riemann–

Cartan space U4, may be a priori restricted by imposing
certain conditions on the curvature and the torsion. Thus,
Einstein’s GR is defined in Riemann space V4, which is
obtained from U4 by the requirement of vanishing tor-
sion. Another interesting limit of PGT is the teleparallel
or Weitzenböck geometry T4. The vanishing of the cur-
vature means that parallel transport is path independent.
The teleparallel geometry is, in a sense, complementary
to Riemannian geometry: curvature vanishes, and torsion
remains to characterize parallel transport. For the physi-
cal interpretation of teleparallel geometry there is a one-
parameter family of teleparallel Lagrangians, which is em-
pirically equivalent to GR [18, 20, 21]. If the parameter
value B = 1/2 the Lagrangian of the theory coincides,
modulo a four-divergence, with the Einstein–Hilbert La-
grangian, and it defines TEGR.
The search for a consistent expression for the gravi-

tating energy and angular-momentum of a self-gravitating
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distribution of matter is undoubtedly a long-standing
problem in GR. It is believed that the energy of the grav-
itational field is not localizable, i.e., defined in a finite
region of the space. The gravitational field does not pos-
sess the proper definition of an energy-momentum ten-
sor. It is usual to define some energy-momentum and
angular-momentum [22, 23] that are pseudo-tensors and
depend on the second derivative of the metric tensor. These
quantities can be annulled by an adequate coordinate
transformation. Bergmann [22] and Landau–Lifshitz [23]
justify that the energy and angular-momentum are con-
sistent with Einstein’s principle of equivalence. According
to this principle “any space-time region, infinitesimal or
not, is flat if and only if the Riemann–Christoffel ten-
sor vanishes in this region.” In such a flat space-time,
the energy of the gravitational field is null. Therefore,
it is only possible to define the energy of the gravita-
tional field in the whole space-time region and not only
in a small region. Einstein GR can also be reformulated
in the context of teleparallel geometry [24–42]. In this
geometry the dynamical field corresponds to the orthonor-
mal tetrad field eaµ (a, µ are SO(3,1) and space-time
indices, respectively). Teleparallel geometry is a suitable
framework to address the notions of energy, momentum
and angular-momentum of any space-time that admits
a 3+1 foliation [43]. Therefore, we consider TEGR in this
work.
In order to calculate the energy and angular-momentum

we use the Hamiltonian that is formulated for an arbitrary
teleparallel theories using Schwinger’s time gauge [44–
57]. In this formulation it is shown that TEGR is the
only viable consistent teleparallel theory of gravity. Maluf
and Rocha [58] established a theory in which Schwinger’s
time gauge has not been incorporated in the geometry of
absolute parallelism. In this formulation, the definition
of gravitational angular-momentum arises by suitably
interpreting the integral form of the constraint equa-
tion Γ ab = 0. This definition has been successfully ap-
plied to the gravitational field of a thin, slowly rotating
mass shell [59] and for the three-dimensional BTZ black
hole [60, 61].
Definitions for the gravitational energy in the context

of the TEGR have already been proposed in the litera-
ture [31–37,45–50]. Expressions for the gravitational en-
ergy arise from the surface term of the total Hamilto-
nian, given in [62, 63]. These expressions are equivalent to
the integral form of the total divergences of the Hamil-
tonian density developed by Maluf et al. [58]. These ex-
pressions yield the same value for the total energy of the
gravitational field. However, since these expressions con-
tain the lapse function in the integrand, none of them are
suitable to the calculation of the irreducible mass of the
Kerr black hole. This is because the lapse function van-
ishes on the external event horizon of the black hole [45–
50]. The energy expressions [62, 63] are neither to be ap-
plied to a finite surface integration nor do they yield the
total energy of the space-time [45–50]. A good energy-
momentum expression for gravitating systems should sat-
isfy a variety of requirements; to give the standard values
of the total quantities for asymptotically flat space, to re-

duce to the material energy-momentum in the proper limit
and to be positive [64, 65]. No entirely satisfactory ex-
pression has yet been identified. For more details on the
topic of the quasi-local approach a review article is referred
to [66].
To calculate the energy and momentum, the definition

of energy-momentum, i.e., P a, is given, which is invariant
under global SO(3,1) transformations. It has been argued
elsewhere [67, 68] that it makes sense for P a to have a de-
pendence on the frame. The energy-momentum in classi-
cal theories of particles and fields does not depend on the
frame, and it has been asserted that such a dependence is
a natural property of the gravitational energy-momentum.
It is assumed that a set of tetrads fields is adapted to
an observer in the space-time determined by the metric
tensor gµν .
We investigate the irreducible mass Mirr of the dila-

ton black hole. This Mirr is the total mass of the black
hole at the final stage of Penrose’s process of energy ex-
traction, considering that the maximum possible energy
is extracted. Mirr is also related to the energy contained
within the external event horizon E(r+) of the black hole
(the surface of the constant radius r = r+ defines the ex-
ternal event horizon). Every expression for a local or quasi-
local gravitational energy must necessarily yield the value
of E(r+) in close agreement with 2Mirr, since we know
beforehand the value of Mirr as a function of the ini-
tial angular-momentum of the black hole [69]. The evo-
lution of 2Mirr is a crucial test for any expression of the
gravitational energy. E(r+) has been obtained by means
of various energy expressions [70]. The gravitational en-
ergy used in this article is the only one that yields a sat-
isfactory value for E(r+) and that arises in the frame-
work of the Hamiltonian formulation of the gravitational
field.
The main aim of the present work is to reformulate

the solution given by Garfinkle et al. [4] within the frame-
work of TEGR and then compute energy, momentum and
angular-momentum using the energy-momentum tensor.
In Sect. 2 we briefly review TEGR theory for the gravi-
tational, electromagnetic and dilaton cases and then we
derive the equations of motion. A summary of the deriva-
tion of energy and angular-momentum is given in Sect. 3.
In Sect. 4, we study the two tetrad fields and then cal-
culate the energy and angular-momentum. To calculate
the energy associated with the second tetrad field we use
the regularized expression for the gravitational energy-
momentum in Sect. 5. The final section is devoted to a
discussion and our conclusions.

2 TEGR for the gravitation, electromagnetic
and dilaton cases

In a space-time with absolute parallelism the parallel vec-
tor fields eµa define the nonsymmetric affine connection

Γλµν
def.
= ea

λeaµ,ν , (1)
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where eaµ,ν = ∂νeaµ.
1 The curvature tensor defined by Γλµν ,

given by (1), is identically vanishing. The metric tensor gµν
is defined by

gµν
def.
= ηabe

a
µe
b
ν , (2)

with ηab = (−1,+1,+1,+1) the metric of Minkowski
space-time.
The Lagrangian density for the gravitational field in

TEGR, in the presence of matter fields, is given by2 [45–50]

LG = eLG =−
e

16π

(
T abcTabc

4
+
T abcTbac

2
−T aTa

)
−Lm

=−
e

16π
ΣabcTabc−Lm , (3)

where e= det(eaµ). The tensor Σ
abc is defined by

Σabc
def.
=
1

4
(T abc+T bac−T cab)+

1

2
(ηacT b−ηabT c) . (4)

T abc and T a are the torsion tensor and the basic vector field
defined by

T aµν
def.
= eaλT

λ
µν = ∂µe

a
ν −∂νe

a
µ ,

T abc
def.
= eb

µec
νT aµν , T

a def.= T bb
a
. (5)

The quadratic combination ΣabcTabc is proportional to
the scalar curvature R(e), except for a total divergence
term [45–50]. Lm represents the Lagrangian density for
matter fields.
The electromagnetic Lagrangian density Le.m. is [72]

Le.m. = eLe.m. = ee
−2ξgµρgνσFµνFρσ , (6)

with Fµν being the Maxwell field associated with a U(1)

subgroup ofE8×E8 and defined by
3 Fµν

def.
= ∂µAν−∂νAµ.

Finally the dilaton Lagrangian density LD is [4]

LD = eLD = 2e(∇ξ)
2 , (7)

with ξ being the dilaton.
The gravitational, electromagnetic and dilaton field

equations for the system described by LG+Le.m.+LD are
the following:

eaλebµ∂ν(eΣ
bλν)− e

(
ΣbνaTbνµ−

1

4
eaµTbcdΣ

bcd
)
=
1

2
κeTaµ ,

∇µ(e
−2ξFµν) = 0 ,

∇2ξ+
1

2
e−2ξF 2 = 0 , (8)

1 Space-time indices µ, ν, . . . and SO(3,1) indices a, b . . . run
from 0 to 3. Time and space indices are indicated by µ= 0, i,
and a= (0), (i).
2 Throughout this paper we use the relativistic units, c =
G= 1 and κ= 8π.
3 Heaviside–Lorentz rationalized units will be used through-
out this paper.

where

Tµν = 2

{
∇µξ∇νξ−

1

2
gµνg

ρσ∇ρξ∇σξ

+ e−2ξ
(
gνσFµρF

σρ−
1

4
gµνF

2

)}
.

It is possible to prove by explicit calculations that the left
hand side of the symmetric field equation (8) is exactly
given by [45–50]

e

2

[
Raµ(e)−

1

2
eaµR(e)

]
.

The axial-vector part of the torsion tensor aµ is defined by

aµ
def.
=
1

6
εµνρσT

νρσ =
1

3
εµνρσγ

νρσ , (9)

where

εµνρσ
def.
=
√
−gδµνρσ ,

and δµνρσ being completely antisymmetric and normalized
as δ0123 =−1.

3 Energy, momentum
and angular-momentum

In the context of Einstein’s GR, rotational phenomena are
certainly not completely understood issues. The prominent
manifestation of a purely relativistic rotation effect is the
dragging of inertial frames. If the angular-momentum of
the gravitational field of an isolated system has a meaning-
ful notion, then it is reasonable to expect the latter to be
somehow related to the rotational motion of the physical
sources.
The angular-momentum of the gravitational field has

been addressed in the literature by means of various ap-
proaches. The oldest approach is based on pseudoten-
sors [22, 23], out of which angular-momentum superpo-
tentials are constructed. An alternative approach assumes
the existence of certain Killing vector fields that allow for
the construction of conserved integral quantities [73–75].
Finally, the gravitational angular-momentum can also be
considered in the context of Poincaré gauge theories of
gravity [76–79], either in the Lagrangian or in the Hamil-
tonian formulation. In the latter case it is required that the
generators of spatial rotations at infinity have well defined
functional derivatives. From this requirement a certain sur-
face integral arises, whose value is interpreted as the gravi-
tational angular-momentum.
The Hamiltonian formulation of TEGR is obtained by

establishing the phase space variables. The Lagrangian
density does not contain the time derivative of the tetrad
component, ea0. Therefore, this quantity will arise as a La-
grange multiplier [80]. The momentum canonically conju-
gated to eai is given by Π

ai = δL/δėai. The Hamiltonian
formulation is obtained by rewriting the Lagrangian dens-
ity in the form L = pq̇−H, in terms of eai,Πai and the
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Lagrange multipliers. The Legendre transformation can be
successfully carried out and the final form of the Hamilto-
nian density has the form [43]

H = ea0C
a+αikΓ

ik+βkΓ
k , (10)

plus a surface term. Here αik and βk are Lagrangemultipli-
ers that are identified as

αik =
1

2
(Ti0k+Tk0i) , βk = T00k , (11)

and Ca, Γ ik and Γ k are first class constraints. The Pois-
son brackets between any two field quantities F and G are
given by

{F,G}=

∫
d3x

(
δF

δeai(x)

δG

δΠai(x)
−

δF

δΠai(x)

δG

δeai(x)

)
.

(12)

We recall that the Poisson brackets {Γ ij(x), Γ kl(x)} repro-
duce the angular-momentum algebra [45–50].
The constraint Ca is written as Ca = −∂iΠai+ha,

where ha is an intricate expression of the field variables.
The integral form of the constraint equation Ca = 0 moti-
vates the definition of the gravitational energy-momentum
four-vector P a [45–50] by

P a =−

∫
V

d3x∂iΠ
ai , (13)

where V is an arbitrary volume of the three-dimensional
space. In the configuration space we have

Πai =−4κ
√
−gΣa0i , (14)

with

∂ν
(√
−gΣaλν

)
=
1

4κ

√
−geaµ(t

λµ+T λµ) ,

where

tλµ = κ
(
4ΣbcλT µbc− g

λµΣbcdTbcd
)
.

The emergence of total divergences in the form of scalar
or vector densities is possible in the framework of theories
constructed out of the torsion tensor. Metric theories of
gravity do not share this feature. By making λ= 0 in (14)
and identifying Πai on the left side of the latter, the inte-
gral form of (13) is written as

P a =

∫
V

d3x
√
−geaµ(t

0µ+T 0µ) . (15)

Equation (15) suggests that P a is now understood as the
gravitational energy-momentum [45–50]. The spatial com-
ponent P (i) forms a total three-momentum, while the tem-
poral component P (0) is the total energy [23].
It is possible to rewrite the Hamiltonian density of (10)

in the equivalent form [59]

H = ea0C
a+
1

2
λabΓ

ab , (16)

where λab =−λba are the Lagrangian multipliers that are
identified by λik = αik and λ0k = −λk0 = βk. The con-
straints Γ ab =−Γ ba [43] embody both constraints Γ ik and
Γ k by means of the relation

Γ ik = ea
ieb
kΓ ab , Γ k ≡ Γ 0k = ea

0eb
kΓ ab . (17)

The constraint Γ ab can be read as

Γ ab =Mab+4κ
√
−ge(0)

0(Σa(0)b−Σb(0)a) . (18)

In similarity to the definition of P a, the integral form of
the constraint equation Γ ab = 0 motivates the new defin-
ition of the space-time angular-momentum. The equation
Γ ab = 0 implies

Mab =−4κ
√
−gec

0(Σacb−Σbca) . (19)

Maluf et al. [45–50,59] defined

Lab =

∫
V

d3xeµ
aeν

bMµν (20)

as the four-angular-momentum of the gravitational field
for an arbitrary volume V of the three-dimensional space.
In Einstein–Cartan type theories there also appear con-
straints that satisfy the Poisson brackets as given by (12).
However, such constraints arise in the form Π [ij] = 0, and
so a definition similar to (20), i.e., interpreting the con-
straint equation as an equation for the angular-momentum
of the field, is not possible. Definition (20) is a three-
dimensional integral. The quantities P a and Lab are
separately invariant under general coordinate transform-
ations of the three-dimensional space and under time
reparametrizations, which is an expected feature, since
these definitions arise in the Hamiltonian formulation of
the theory. Moreover, these quantities transform covari-
antly under global SO(3,1) transformations [59].

4 Tetrad fields with spherical symmetry

Now we will consider two simple configurations of tetrad
fields and discuss their physical interpretation as reference
frames. The first one in a quasi-orthogonal coordinate sys-
tem can be written as [81]

e(0)
0 =A , eα

0 = Cxa , e(0)
α =Dxα ,

ea
α = δa

αB+Fxaxα+ εaαβSx
β , (21)

where A, C, D, B, F , and S are unknown functions of r.
It can be shown that the unknown functions D and F can
be eliminated by coordinate transformations [82, 83], i.e.,
by making use of the freedom to redefine t and r, leaving
the tetrad field (21) having four unknown functions in the
quasi-orthogonal coordinates. Thus the tetrad field (21)
without the unknown functions D and F and also with-
out the two unknown functions C and S will be used in the
following discussion for the calculations of energy, momen-
tum and angular-momentum but in spherical coordinates.
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Therefore, the tetrad field (21) can be written in spherical
coordinates without the unknown functionsD, F , C and S
as [83]

(
e1a
µ
)
=

⎛
⎜⎜⎜⎝

1
A 0 0 0

0 B sin θ cosφ cos θ cosφ
R(r) − sinφ

R(r) sin θ

0 B sin θ sinφ cos θ sinφ
R(r)

cosφ
R(r) sin θ

0 B cos θ − sin θ
R(r) 0

⎞
⎟⎟⎟⎠ . (22)

The other configuration of a tetrad field that has a sim-
ple interpretation as a reference frame has the form

(
e2a
µ
)
=

⎛
⎜⎜⎜⎝

1
A
0 0 0

0 B 0 0

0 0 1
R(r) 0

0 0 0 1
R(r) sin θ

⎞
⎟⎟⎟⎠ . (23)

The two tetrads (22) and (23) are related by a local Lorentz
transformation that keeps spherical symmetry, i.e., the
tetrad (22) can be written in terms of the tetrad (23), using
the following local Lorentz transformation:(

e1a
µ
)
= Λν

µ
(
e2a
ν
)
, (24)

where

Λν
µ =

⎛
⎜⎜⎝
1 0 0 0

0 sin θ cosφ cos θ cosφ − sinφ

0 sin θ sinφ cos θ sinφ cosφ

0 cos θ − sin θ 0

⎞
⎟⎟⎠ .

The space-times associated with the two tetrad
fields (22) and (23) are the same and have the form

ds2 =−A2dt2+
1

B2
dr2+R(r)2(dθ2+sin2 θdφ2) . (25)

Now we are going to calculate the energy, momentum
and angular-momentum associated with the two tetrad
fields (22) and (23). For asymptotically flat space-times,
P 0 yields the ADM energy [84]. In the context of tetrad
theories of gravity, asymptotically flat space-times may be
characterized by the asymptotic boundary condition

eaµ ∼= ηaµ+
1

2
haµ(1/r) , (26)

and by the condition ∂µe
a
µ = O(1/r

2) in the asymp-
totic limit r→∞. An important property of tetrad fields
that satisfy (26) is that in the flat space-time limit one
has eaµ(t, x, y, z) = δ

a
µ, and therefore the torsion tensor

T aµν = 0.
Now we are going to apply (13) to the tetrad field (22)

to calculate the energy content. We perform the calcu-
lations in spherical coordinates. Equations (22) and (23)
assumed that the reference space is determined by a set
of tetrad fields eaµ for the flat space-time such that the
condition T aµν = 0 is satisfied. Using (5) in (22), the non-
vanishing components of the torsion tensor are given by

T (0)01 =
A′

A
, T (2)12 =

(1−R′(r)B)

R(r)B
= T (3)13 ,

(27)

and the non-vanishing component of the tensor T (a) de-
fined by (5) is given by

T (1) =
B(r){2A(r)−2R′(r)A(r)B(r)−A′(r)B(r)R(r)}

R(r)A
.

(28)

The axial vector associated with (22) is vanishing identi-
cally due to the fact that the tetrad field of (22) has a spher-
ical symmetry [81].
Now we are going to apply (13) to the tetrad field (22)

using (27) and (28) to calculate the energy content. We
perform the calculations in spherical coordinates. The only
required component of Σµνλ is

Σ(0)01 =−
R(r) sin θ{1−R′(r)B}

4π
. (29)

Using (29) in (13) we obtain

P (0) =E =−

∮
S→∞

dSkΠ
(0)k

=−
1

4π

∮
S→∞

dSkeΣ
(0)0k =R(r){1−R′(r)B} .

(30)

Now let us apply (13) to the evaluation of the irreducible
mass by fixing V to be the volume within the r = r+ sur-
face, where r+ is the external horizon, i.e., B = 0. There-
fore,

P (0) =E =−

∫
Si

dSiΠ
(0)i =−

∫
S

dθdφΠ(0)1(r, θ, φ) ,

(31)

where the surface S is determined by the condition r =
r+. The expression of Π

(0)1 will be obtained by consider-
ing (14) using (4) and (5). The expression of Π(0)1(r, θ, φ)
for the tetrad (22) reads

Π(0)1(r, θ, φ) =
sin θR(r+){1−R′(r+)B(r+)}

4π
, (32)

integrating (32) on the surface of constant radius r = r+,
where r+ is the external horizon of the black hole. On this
surface the second term of (32) vanishes, i.e., B(r+) = 0.
Therefore, on the surface r = r+ we get

P (0) =E =R(r+) . (33)

Equation (33) is consistent with the results obtained before
when R(r+) = r+ [45–50,66]; otherwise we obtain a differ-
ent result. It has been shown [4] that the unknown func-
tions in the metric given by (25) may have the value

A=
1

B
=

√
1−
2M

r
, R(r) = r

√
1−
Q2e−2ξ0

rM
. (34)

For the value of the unknown functions given by (34) to sat-
isfy the field equation (8) the dilaton, the vector potential,
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the Maxwell field and the energy-momentum tensor must
have the form

ξ = ξ0−
1

2
ln

(
1−
Q2e−2ξ0

rM

)
,

A3 =Q cos θ , F23 =Q sin θ ,

T 00 =
Q2(4rM2e2ξ0−6MQ2+ rQ2)

4r3(rMe2ξ0 −Q2)2
,

T 11 =
Q2(4rM2e2ξ0−2MQ2− rQ2)

4r3(rMe2ξ0 −Q2)2
,

T 22 = T
3
3 =

−
Q2(4r2M3e4ξ0 −6rM2Q2e2ξ0 +2MQ4− r2MQ2e2ξ0 + rQ4)

4r3(rMe2ξ0 −Q2)3
,

(35)

where M,Q, ξ and ξ0 are the mass, charge, dilaton and
the asymptotic value of the dilaton respectively. As is clear
from (33), if the charge Q= 0, then R(r) = r and the irre-
ducible mass will coincide with that obtained before [45–
50, 66]. Equation (33) tells us that the energy associated
with the solution given by (34) on the surface R(r+) is dif-
ferent from what is well known [45–50, 66]. To overcome
such a problem let us use a coordinate transformation that
makes R(r) in (34) appear to be r.
Now we are going to redefine the radial coordinate to be

r =

√
R2+

Q4e−4ξ0

4M2
+
Q2e−2ξ0

2M
. (36)

Using the coordinate transformation (36) in (22) we get

(
eµ1a
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
1− 4M

2e2ξ

λ(R)

0

0
σ(R)

√
1− 4M

2e2ξ

λ(R)
sin θ cosφ

2MR

0
σ(R)

√
1− 4M

2e2ξ

λ(R)
sin θ sinφ

2MR

0
σ(R)

√
1− 4M

2e2ξ

λ(R)
cos θ

2MR

0 0

cos θ cosφ
R − sin φ

R sin θ

cos θ sin φ
R

cosφ
R sin θ

− sin θ
R

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (37)

where

λ(R)
def.
=
√
4R2M2+Q4e−4ξ0e2ξ0+Q2 ,

σ(R)
def.
=
√
4R2M2+Q4e−4ξ0 , (38)

and the associated spacetime of (37) is given by

ds2 =−

(
1−
4M2e2ξ

λ(R)

)
dt2+

4M2R2

σ2(R)
(
1− 4M

2e2ξ

λ(R)

) dR2

+R2(dθ2+sin2 θdφ2) . (39)

When the dilaton ξ and the chargeQ are vanishing, (37) will
be identical with the tetrad field that reproduces the
Schwarzschild spacetime [85].When the dilation solution is
vanishing, (37) will behave asymptotically like

(
eµ1a
)
∼=

⎛
⎜⎜⎜⎜⎜⎝

2R2+2MR+3M2−Q2

2R2
0

0 sin θ cosφ(2R2−2MR−M2+Q2)
2R2

0 sin θ sinφ(2R2−2MR−M2+Q2)
2R2

0 cos θ(2R2−2MR−M2+Q2)
2R2

0 0
cos θ cosφ

R − sinφ
R sin θ

cos θ sinφ
R

cosφ
R sin θ

− sin θ
R

0

⎞
⎟⎟⎟⎠ , (40)

and the associated metric of (40) has the form

ds2 ∼=−

(
1−
2MR−Q2

R2

)
dt2+

(
1+
2MR−Q2

R2

)
dR2

+R2(dθ2+sin2 θdφ2) , (41)

which is the asymptotic form of Reissner–Nordström met-
ric [85].
Now one should repeat the calculations of energy using

the tetrad field given by (37). Using (5) in (37), the non-
vanishing components of the torsion tensor are given by

T 001 =
2λ′(R)M2e2ξ0

λ(R)[λ(R)−4M2eξ0 ]
,

T 212 =
σ(R)

√
λ(R)−4M2e2ξ0 −2MR

√
λ(R)

Rσ(R)
√
λ(R)−4M2e2ξ0

= T 313 ,

(42)

and the non-vanishing component of the tensor T (a) is
given by

T (1) =

−σ(R)
{
σ(R)M2e2ξ0(4λ(R)−Rλ′(R))

+2RM
√
λ4(R)−4λ3(R)M2e2ξ0−λ2(R)σ(R)

}
2R3M2λ2(R)

.

(43)

Using (42) and (43) one calculates the energy content.
The only required component ofΣµνλ is

Σ(0)01 =−
sin θ
{
2MR

√
λ(R)−σ(R)

√
λ(R)−4M2e2ξ0

}
8Mπ

√
λ(R)

.

(44)
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Substituting (44) in (13) we obtain

P (0) =E =−

∮
S→∞

dSkΠ
(0)k =−

1

4π

∮
S→∞

dSkeΣ
(0)0k

=
{2MR

√
λ(R)−σ(R)

√
λ(R)−4M2e2ξ0}

2M
√
λ(R)

=R−

⎡
⎣e
−2ξ0
(√
4R2M2e4ξ0+Q4

×
√√
4M2R2e4ξ0+Q4+Q2−4M2e2ξ0

)
⎤
⎦

2M
√√
4M2R2e4ξ0+Q4+Q2

,

∼=M −
4Q2M2e−2ξ0−4M4+Q4e−4ξ0

8M2R
+O

(
1

R2

)
,

(45)

where we have used the definitions of λ(R) and σ(R)
given by (38). For large R, i.e., limR→∞, (45) will give
the ADM [86]. If the asymptotic dilaton ξ0 is vanishing,
then the asymptotic form of the energy can be obtained
from (45) to have the value

E ∼=M −
4Q2M2−4M4+Q4

8M2R
, (46)

which is the energy of the Reissner–Nordström space-time
when Q4 = 0 andM2 = 0 [85].
Now we may apply (13) to the evaluation of the ir-

reducible mass by fixing V to be the volume within the
R = R+ surface where R+ is the external horizon, i.e.,(
1− 4M

2e2ξ

λ(R+)

)
σ2(R+) = 0. Therefore,

P (0) =E =−

∫
Si

dSiΠ
(0)i(R, θ, φ)

=−

∫
S

dθdφΠ(0)1(R, θ, φ) , (47)

where the surface S is determined by the condition R =
R+. The expression of Π

(0)1 will be obtained by consider-
ing (14) using (4) and (5). The expression ofΠ(0)1(R, θ, φ)
for the tetrad (37) reads

Π(0)1(R, θ, φ)

=

{
2MR+

√
λ(R+)−σ(R+)

√
λ(R+)−4M2e2ξ0

}
8Mπ

√
λ(R+)

,

(48)

where R+ is the external horizon of the black hole.
On this surface the second term of (48) vanishes, i.e.,√
λ(R+)−4M2e2ξ0σ(R+). Therefore, on the surface R =
R+ integration of (48) will give

P (0) =E =R+ , (49)

which is a satisfactory result that has been obtained be-
fore [45–50, 66].

Using (14) in (37) one calculates the momentum and
angular-momentum associated with the first tetrad field
given by (37). In this case we get

Π(1)1(R, θ, φ) = 0 . (50)

Substituting (50) in (13) we get

P (1) =

∫
V

dV ∂1(Π
(1)1(R, θ, φ))

=

∫
S

dS1Π
(1)1(R, θ, φ) = 0 . (51)

By the same method we obtain

Π(2)1(R, θ, φ) = 0 , P (2) = 0 ,

Π(3)1(R, θ, φ) = 0 , P (3) = 0 . (52)

The results of (51) and (52) are expected results, since the
space-time given by (37) is a spherically symmetric static
space-time. Therefore, the spatial momentum associated
with any static solution is identically vanishing [86].
We use (19) and (4) in (20) to calculate the components

of the angular-momentum. Finally we get

M (0)(1)(R, θ, φ) =

−R sin2 θ cosφ
{
2MR

√
λ2(R)−4M2λ(R)e2ξ0

+σ(R)λ(R)−4σ(R)M2e2ξ0
}

4πσ(R)λ(R)
,

M (0)(2)(R, θ, φ) =

−R sin2 θ sinφ
{
2MR

√
λ2(R)−4M2λ(R)e2ξ0

+σ(R)λ(R)−4σ(R)M2e2ξ0
}

4πσ(R)λ(R)
,

M (0)(3)(R, θ, φ) =

−R sin θ cos θ
{
2MR

√
λ2(R)−4M2λ(R)e2ξ0

+σ(R)λ(R)−4σ(R)M2e2ξ0
}

4πσ(R)λ(R)
,

M (1)(2)(R, θ, φ) =M (1)(3)(R, θ, φ) =M (2)(3)(R, θ, φ) = 0 .

(53)

Using (53) in (20) we get

L(0)(1) =

∫ π
0

∫ 2π
0

∫ ∞
0

dθdφdRM (0)(1)(R, θ, φ) = 0 ,

and by the same method we get

L(0)(2) = L(0)(3) = L(1)(2) = L(1)(3) = L(2)(3) = 0 . (54)

It is of interest to note that the vanishing of L(0)(1) and
L(0)(2) is due to the appearance of terms like sinφ and
cosφ, while the vanishing of L(0)(3) is due to the appear-
ance of terms like sin θ cos θ.
To repeat the same computation for the tetrad (23) it is

sufficient to use the transformation rules of the conserved
quantities [87]. Therefore, the required component ofΣµνλ
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needed to calculate the energy of the tetrad field (23) has
the form

Σ(0)01 =−
B(r)R(r)R′(r) sin θ

4π
. (55)

Substituting (55) in (13) we obtain

P (0) =E =−

∮
S→∞

dSkΠ
(0)k(r, θ, φ)

=−
1

4π

∮
S→∞

dSkeΣ
(0)0k =−B(r)R(r)R′(r)

=−
(2rM −Q2e−2ξ0)

√
1− 2M

r

2M
. (56)

When the asymptotic dilaton obeys ξ0 = 0 and the charge
Q= 0, the asymptotic form of the above form of energy is
given by

E ∼=M − r , (57)

which is different from the ADM form [86]. This is due to
the fact that the components of the torsion when M = 0,
Q = 0 and ξ0 = 0 do not in the vanishing case identically
contradict the flatness condition given by (26). Therefore,
in this case we are going to use the regularized expression
for the gravitational energy-momentum [45–50].

5 Regularized expression for the gravitational
energy-momentum and localization
of energy

An important property of the tetrad fields that satisfies
the condition of (26) is that in the flat space-time limit
eaµ(t, x, y, z) = δ

a
µ, and therefore the torsion T

λ
µν = 0.

Hence for the flat space-time it is usual to consider a set
of tetrad fields such that T λµν = 0 in any coordinate sys-
tem. However, in general an arbitrary set of tetrad fields
that yields the metric tensor for the asymptotically flat
space-time does not satisfy the asymptotic condition given
by (26). Moreover, for such tetrad fields the torsion obeys
T λµν �= 0 for the flat space-time [88]. It might be argued,
therefore, that the expression for the gravitational energy-
momentum (13) is restricted to particular class of tetrad
fields, namely, to the class of frames such that T λµν = 0 if
Ea
µ represents the flat space-time tetrad field [88]. To ex-

plain this, let us calculate the flat space-time of the tetrad
field of (23) using (34), which is given by

(
E2a

µ
)
=

⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 1

r
0

0 0 0 1
r sin θ

⎞
⎟⎠ . (58)

Equation (58) yields the following non-vanishing torsion
components:

T (2)12 =−
1

r
= T (3)13 , T

(3)
23 =− cot θ . (59)

The tetrad field (58) when written in Cartesian coordi-
nates will have the form

(
E2a

µ(t, x, y, z)
)
=

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 x

r
y
r

z
r

0 xz

r
√
x2+y2

yz

r
√
x2+y2

−
√
x2+y2

r

0 − y√
x2+y2

x√
x2+y2

0

⎞
⎟⎟⎟⎟⎠ .

(60)

In view of the geometric structure of (60), we see that
(23) does not display the asymptotic behavior required
by (26). Moreover, in general the tetrad field (60) is
adapted to accelerated observers [43, 45–50, 88]. To ex-
plain this, let us consider a boost in the x-direction of (60).
We find

(
E2a

µ(t, x, y, z)
)

=

⎛
⎜⎜⎜⎜⎜⎝

γ vγ 0 0
vγx
r

γx
r

y
r

z
r

vγxz

r
√
x2+y2

γxz

r
√
x2+y2

yz

r
√
x2+y2

−
√
x2+y2

r

−vγy√
x2+y2

−γy√
x2+y2

x√
x2+y2

0

⎞
⎟⎟⎟⎟⎟⎠
,

(61)

where v is the speed of the observer and γ = 1√
1−v2
. For

a static object in a space-time whose four-velocity is given
by uµ = (1, 0, 0, 0) we may compute its frame components

ua = eaµu
µ =
(
γ, vγx

r
, vγxz

r
√
x2+y2

, −vγy√
x2+y2

)
. It can be shown

that along an observer’s trajectory whose velocity is deter-
mined by ua the quantities

φ
(k)
(j) = u

i
(
E2
(k)
m∂iE2(j)

m
)
, (62)

constructed from (61), are non-vanishing. This fact indi-
cates that along the observer’s path the spatial axis E2(a)

µ

rotates [43, 88]. In spite of the above problems discussed for
the tetrad field of (23) it yields a satisfactory value for the
total gravitational energy-momentum, as we will discuss.
In (13) it is implicitly assumed that the reference space

is determined by a set of tetrad fields eaµ for flat space-
time, such that the condition T aµν = 0 is satisfied. How-
ever, in general there exist flat space-time tetrad fields for
which T aµν �= 0. In this case (13) may be generalized [43,
88] by adding a suitable reference space subtraction term,
exactly like in the Brown–York formalism [89–91].
We will denote T aµν(E) = ∂µe

a
ν −∂νeaµ and Πaj(E)

as the expression of Πaj constructed by the flat tetrad
Eaµ. The regularized form of the gravitational energy-
momentum P a is defined by [43, 88]

P a =−

∫
V

d3x∂k[Π
ak(e)−Πak(E)] . (63)

This condition guarantees that the energy-momentum of
the flat space-time always vanishes. The reference space-
time is determined by tetrad fields Eaµ, obtained from e

a
µ

by requiring the vanishing of the physical parameters like
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mass, angular-momentum, etc. Assuming that the space-
time is asymptotically flat, (63) may have the form [43, 88]

P a =−

∮
S→∞

dSk[Π
ak(e)−Πak(E)] , (64)

where the surface S is established at spacelike infinity.
Equation (64) transforms as a vector under the global
SO(3,1) group [45–50].
Wemay likewise establish the regularized expression for

the gravitational four-angular-momentum. It reads

Lab =

∫
V

d3x[Mab(e)−Mab(E)] . (65)

Now we are in a position to proof that the tetrad
field (23) yields a satisfactory value for the total grav-
itational energy-momentum. We will integrate (64) over
a surface of constant radius x1 = r and require r→∞.
Therefore, the index k in (64) takes the value k = 1. We
need to calculate the quantity

Σ(0)01 = e(0)0Σ
001 =

1

2
e(0)0(T

001− g00T 1) .

Evaluating the above equation we find

Π(0)1(e) =
−1

4π
eΣ(0)01

=−
sin θ(2rM −Q2e−2ξ0)

√
1− 2M

r

8πM
, (66)

and the expression of Π(0)1(E) is obtained by just making
M = 0, Q= 0 and ξ0 = 0 in (66); it is given by

Π(0)1(E) =
−1

4π
r sin θ . (67)

Thus the gravitational energy of the tetrad field of (23) is
given by

P (0) =

∫
dθdφ

1

4π
sin θ

(
r−
(2rM −Q2e−2ξ0)

√
1− 2M

r

2M

)
,

r−
(2rM −Q2e−2ξ0)

√
1− 2M

r

2M
∼=M +

Q2e−2φ0

2M
+O

(
1

r

)
,

(68)

which is exactly the ADM when Q2 = 0 up to O(1/r).
Equation (68) tells us that when (2rM −Q2e−2ξ0) = 0 the
form of the energy given by (68) will follow and this is one
of the defects of the solution given by (34) [4]. Therefore,
we use the coordinate transformation given by (36). The
tetrad (23) after using the transformation (36) will have
the form

(
e2a
µ
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
1−4M

2e2ξ

λ(R)

0 0 0

0
σ(R)

√
1− 4M

2e2ξ

λ(R)

2MR 0 0

0 0 1
R

0

0 0 0 1
R sin θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(69)

Repeating the calculations above, the non-vanishing com-
ponents of the torsion tensor and the vector field T (a) of the
tetrad field given by (69) have the form

T (0)01 =−
2M2λ′(R)e2ξ0

λ(R)[λ(R)−4M2e2ξ0 ]
,

T (2)12 = T
(3)
13 =−

1

R
, T (3)23 =− cot θ ,

T (1) =−
σ(R){λ′(R)−4λ(R)M2e2ξ0−RM2λ′(R)e2ξ0}

R3M2λ2(R)
,

T (2) =−
cot θ

R2
. (70)

The only required component of Σµνλ needed to cal-
culate the energy using the regularized expression given
by (64) is

Σ(0)01(e) =

(
σ(R)
√
λ(R)−4M2e2ξ0

2M
√
λ(R)

)
sin θ

4π
,

Σ(0)01(E) =
R sin θ

4π
. (71)

Substituting (71) in (64) we obtain

P (0) = E =−

∮
S→∞

dSkΠ
(0)k(R, θ, φ)

=−
1

4π

∮
S→∞

dSkeΣ
(0)0k

= R−
σ(R)

√
λ(R)−4M2e2ξ0

2M
√
λ(R)

= R−

[√
4M2R2+Q4e−4ξ0

×
√√
4M2R2+Q4e−4ξ0e2ξ0+Q2−4M2e2ξ0

]

2M

√√
4M2R2+Q4e−4ξ0e2ξ0 +Q2

∼=M +O

(
1

R

)
,

which is the ADM up to O

(
1

R

)
,

∼=M −
4Q2M2e−2ξ0+4M4−Q4e−4ξ0

8M2R
+O

(
1

R2

)
,

(72)

which is the energy of Reissner–Nordström space-time
when the asymptotic dilaton ξ0 = 0,Q

4 = 0 andM2 = 0 up
to O
(
1
R2

)
[85].

By the same method used for the first tetrad given
by (37)wefindthat themomentumandangular-momentum
associatedwith the second tetrad field given by (69) are

Π(1)1(R, θ, φ) = 0 ,

P (1) =

∫
V

dV ∂1(Π
(1)1(R, θ, φ))

=

∫
S

dS1Π
(1)1(R, θ, φ) = 0 ,

Π(2)1(R, θ, φ) = 0 , P (2) = 0 ,

Π(3)1(R, θ, φ) = 0, P (3) = 0 . (73)
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The non-vanishing components of the angular-momentum
are given by

M (0)(1)(e) =
R sin θ(λ(R)−4M2e2ξ0)

4πλ(R)

∼=
sin θ(R−M)

4π
+O

(
1

R

)
,

M (0)(1)(E)∼=
R sin θ

4π
+O

(
1

R

)
,

M (0)(2)(R, θ, φ) =
MR2 cos θ

√
(λ(R)−4M2e2ξ0)

4πσ(R)
√
λ(R)

,

M (0)(3)(R, θ, φ) =M (1)(2)(R, θ, φ) =M (1)(3)(R, θ, φ)

=M (2)(3)(R, θ, φ) = 0 . (74)

Using (74) in (65) we get

L(0)(1) =

∫ π
0

∫ 2π
0

∫ ∞
0

dθdφdR[M (0)(1)(e)−M (0)(1)(E)]

=M

∫ ∞
0

dR , (75)

which give an infinite result! By the same method we can
obtain

L(0)(2) = L(0)(3) = L(1)(2) = L(1)(3) = L(2)(3) = 0 . (76)

It is of interest to note that the non-vanishing of L(0)(1) is
due to the appearance of terms like sin θ, while the vanish-
ing of L(0)(2) is due to the appearance of terms like cos θ.
We show by explicit calculation that the energy-

momentum tensor, which is coordinate independent, does
not give a consistent result of the angular-momentum
when applied to the tetrad field given by (23), which does
not satisfy the boundary condition given by (26).

6 Main results and discussion

The main results of this paper are the following.

• Two different tetrad fields are used. The space-time as-
sociated with these tetrad fields is given by (25).

• The energy of these tetrad fields is calculated using the
gravitational energy-momentum tensor, which is coor-
dinate independent [45–50]. One of these tetrad fields,
given by (22), gives a satisfactory result for the energy
after using the coordinate transformation given by (36).
The other tetrad field that is given by (23), its associated
energy, depends on the radial coordinate.

• Calculations of the torsion components associated with
the two tetrad fields are given. From these calculations
we show that the torsion components of each tetrad field
are different. This may give an indication of why the en-
ergy of the two tetrad fields is different.

• We use the regularized expression of the gravitational
energy-momentum tensor to calculate the energy associ-
ated with the second tetrad field given by (23).

• We have shown that the energy associated with the sec-
ond tetrad field did not give a consistent result even
after using the regularized expression of the gravita-
tional energy-momentum tensor. Therefore, we use the
coordinate transformation given by (36). Applying this
coordinate transformation to the tetrad field (23) we
have got a satisfactory value of energy that coincides
with the value of energy of the first tetrad field.

• Using the definition of the energy and the angular-
momentum given by (13) and (20) we show by explicit
calculations that the angular-momentum depends on
the choice of the frame used.

• The calculation of the irreducible mass is given within
the external horizons using the Hamiltonian formula-
tion. From this calculation we show that the external
horizons of each model do not play any role for the
energy.

• We have shown by explicit calculations that the diagonal
tetrad field, which is given by (23), suffers from some
problems.
i) It does not satisfy the condition given by (26), which
guarantees the flatness of spacetime; consequently,
the components of the torsion tensor did not vanish
when the physical quantities are set equal to zero.

ii) The use of the energy-momentum tensor given by (13)
did not give consistent results! Therefore, we have
used the regularized expression of the energy-
momentum tensor and got a consistent result for
the energy. Also we have shown that (20) and (65)
gave infinite results on calculating the angular-
momentum [86]!

• The construction of the tetrad given by (23) is the square
root of the metric given by (25); meanwhile, the con-
struction of the tetrad given by (22) is not the square
root of (25). A possible interpretation of the result given
by the second tetrad (which is the square root of the met-
ric) is that it may not be a physical one. The same prob-
lem has appeared [88] for the Kerr solution. We need
more studies to confirm this conclusion.

Acknowledgements. The author would like to thank the referee
for careful reading, careful checking the mathematics, putting
the paper in a more readable form and the comments given for
the second tetrad.
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54. R. Beig, N.Ó. Murchadha, Ann. Phys. (New York) 174,
463 (1987)

55. L.B. Szabados, Class. Quantum Grav. 20, 2627 (2003)
56. J.W. Maluf, A.A. Sousa, gr-qc/0002060 (2000)
57. A.A. Sousa, J.W. Maluf, Prog. Theor. Phys. 104, 531
(2000)

58. J.W. Maluf, J.F. de Rocha-Neto, Phys. Rev. D 64, 084014
(2001)

59. J.W. Maluf, S.C. Ulhoa, F.F. Faria, J.F. da Rocha-Neto,
Class. Quantum Grav. 23, 6245 (2006)

60. A.A. Sousa, R.B. Pereira, J.F. da Rocha-Neto, Prog.
Theor. Phys. 114, 1179 (2005)

61. A.A. Sousa, J.S. Moura, R.B. Pereira, gr-qc/0702109
62. J.M. Nester, Int. J. Mod. Phys. A 4, 1755 (1989)
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